FACTS  AND  FORMULAE  FOR  LOGARITHMS  QUESTIONS

 

 

EXPONENTIAL FUNCTION

 For every 

xR, ex=1+x+x22!+x33!+...+xnn!+... 

or  ex=n=0xnn!

Here ex is called as exponential function and it is a finite number for every xR.

 

 

LOGARITHM

Let a,b be positive real numbers then ax=b can be written as 

     logab=x;  a1, a>0, b>0

e.g, 25=32 log232=5

 

(i) Natural Logarithm :  

logeN is called Natural logarithm or Naperian Logarithm, denoted by ln N i.e, when the base is 'e' then it is called as Natural logarithm.

e.g , loge5, loge181 ... etc

 

(ii) Common Logarithm :  is called common logarithm or Brigg's Logarithm i.e., when base of log is 10, then it is called as common logarithm.

e.g log10100, log10248, etc

 

PROPERTIES OF LOGARITHM

1. logaxy=logax+logay

 

 2. logaxy=logax-logay

 

3. logxx=1

 

4. loga1=0

 

5. logaxp=plogax

 

6. logax=1logxa

 

7. logax=logbxlogba=logxloga

 

CHARACTERISTICS AND MANTISSA


Characteristic : The integral part of logarithm is known as characteristic.

Mantissa : The decimal part is known as mantissa and is always positive.

E.g, In logax, the integral part of x is called the characteristic and the decimal part of x is called the mantissa.

For example: In log 3274 = 3.5150, the integral part is 3 i.e., characteristic is 3 and the decimal part is .5150 i.e., mantissa is .5150

To find the characteristic of common logarithm log10x:

(a) when the number is greater than 1  i.e., x > 1

In this case, the characteristic is one less than the number of digits in the left of the decimal point in the given number.

 

(b) when the number is less than 1 i.e., 0<x<1

In this case the characteristic is one more than the number of zeros between the decimal point and the first significant digit of the number and is negative.

Instead of -1, -2, etc. we write, 1¯, 2¯ etc.

Example :

Number Characteristic348.2529.219300.031252¯

Q:

If log330 = 1a  and  log530=1b then the value of 3log302 is:

A) 3(1+a+b) B) 2(1-a-b)
C) 3(1-a-b) D) 3(1+a-b)
 
Answer & Explanation Answer: C) 3(1-a-b)

Explanation:
Report Error

View Answer Report Error Discuss

25 5183
Q:

The greatest possible value of n could be 9n < 108 if, given that log 3 = 0.4771 and nN:

A) 7 B) 8
C) 9 D) 10
 
Answer & Explanation Answer: B) 8

Explanation:

 

Taking Log to both sides 

 we get

 n = 8           

Report Error

View Answer Report Error Discuss

8 4782
Q:

If A = log321875 and B = log2432187, then which one of the following is correct?

A) A B) A=B
C) A>B D) can't be determined
 
Answer & Explanation Answer: B) A=B

Explanation:

 Given A = log321875 and B = log2432187

B = log352187 = log321875

=> A

Therefore, A = B

   

Report Error

View Answer Report Error Discuss

7 4629
Q:

Find value of log27 +log 8 +log1000log 120

A) 1/2 B) 3/2
C) 2 D) 2/3
 
Answer & Explanation Answer: B) 3/2

Explanation:

 = log 33 + log 23+ log 103log10×3×22 

 

 

 

=log33 12+log 23+log 10312log(10×3×22)  

 

 

 

 

 

 

 

=12log 33+3 log 2+12 log103log10+log3+log22  

 

 

 

 

 

 

 

=32log 3 + 2 log 2 + log 10log 3 + 2 log 2 + log 10 = 32  

Report Error

View Answer Report Error Discuss

27 4625
Q:

If a, b, c be the pth, qth and rth terms of a GP then the value of (q-r) log a + (r-p) log b + (p-q) log c is :

A) 0 B) 1
C) -1 D) pqr
 
Answer & Explanation Answer: A) 0

Explanation:

 

 

                             

                             

Report Error

View Answer Report Error Discuss

12 4383
Q:

The value of log3437 is :

A) 1/3 B) -3
C) -1/3 D) 3
 
Answer & Explanation Answer: A) 1/3

Explanation:

log3437log73713log77We know that logxx = 1=> 13

Report Error

View Answer Report Error Discuss

12 4135
Q:

The value of log55log49log32 is :

A) 1 B) 3/2
C) 2 D) 5
 
Answer & Explanation Answer: A) 1

Explanation:
Report Error

View Answer Report Error Discuss

17 4104
Q:

The number of solutions of the equation logx2x2+40log4xx-14log16xx3=0 is:

A) 0 B) 1
C) 2 D) 3
 
Answer & Explanation Answer: D) 3

Explanation:
Report Error

View Answer Report Error Discuss

13 4059