Height and Distance Questions

FACTS  AND  FORMULAE  FOR  HEIGHT  AND  DISTANCE  PROBLEMS

 

 

1.In a right angled OAB, where BOA=θ

 

(i). sinθ =PerpendicularHypotenuse=ABOB

 

(ii). cosθ=BaseHypotenuse=OAOB

 

(iii). tanθ=PerpendicularBase=ABOA

 

(iv). cosecθ =1sinθ=OBAB

 

(v). secθ=1cosθ=OBOA

 

(vi). cotθ=1tanθ=OAAB

 

2. Trigonometrical Identities :

(i)sin2θ+cos2θ=1

(ii). 1+tan2θ=sec2θ

(iii). 1+cot2θ=cosec2θ

 

3. Values of T-ratios :

θ0o30o45o60o90osin θ01212321cos θ13212120tan θ01313Not defined

 

4. Angle of Elevation:

Suppose a man from a point O looks up at an object P, placed above the level of his eye. Then, the angle which the line of sight makes with the horizontal through O, is called the angle of elevation of P as seen from O.

Therefore, Angle of elevation of P from O is =AOP

 

5. Angle of Depression :

Suppose a man from a point O looks down at an object P, placed below the level of his eye, then the angle which the line of sight makes with the horizontal through O, is called the angle of depression of P as seen from O.

Q:

A man standing at a point P is watching the top of a tower, which makes an angle of elevation of 30º with the man's eye. The man walks some distance towards the tower to watch its top and the angle of the elevation becomes 60º. What is the distance between the base of the tower and the point P?

A) Data inadequate B) 8 units
C) 12 units D) None of these
 
Answer & Explanation Answer: A) Data inadequate

Explanation:

One of AB, AD and CD must have given.

So, the data is inadequate.

Report Error

View Answer Report Error Discuss

25 31385
Q:

An observer 1.6 m tall is 203away from a tower. The angle of elevation from his eye to the top of the tower is 30º. The heights of the tower is:

A) 21.6 m B) 23.2 m
C) 24.72 m D) None of these
 
Answer & Explanation Answer: A) 21.6 m

Explanation:

 

 

 

 Draw BE // CD

 

Then, CE = AB = 1.6 m,

 

BE = AC =

 DEtan30=> DE = tan30 x 203=> DE = 13x203 = 20

 

Therefore, CD = CE + DE = (1.6 + 20) m = 21.6 m.

Report Error

View Answer Report Error Discuss

24 22875
Q:

If an object travels at five feet per second, how many feet does it travel in one hour?

A) 30 B) 3000
C) 18 D) 1800
 
Answer & Explanation Answer: D) 1800

Explanation:

If an object travels at 5 feet per second it covers 5x60 feet in one minute, and 5x60x60 feet in one hour.

 

 

 

Answer = 1800 

Report Error

View Answer Report Error Discuss

24 11934
Q:

Jack takes 20 minutes to jog around the race course one time, and 25 minutes to jog around a second time. What is his average speed in miles per hour for the whole jog if the course is 3 miles long?

A) 6 B) 8
C) 9 D) 10
 
Answer & Explanation Answer: B) 8

Explanation:

Average speed = total distance / total time

Total distance covered = 6 miles; total time = 45 minutes = 0.75 hours

Average speed = 6/ 0.75 = 8 miles/hour

Report Error

View Answer Report Error Discuss

21 8503
Q:

A vertical toy 18 cm long casts a shadow 8 cm long on the ground. At the same time a pole casts a shadow 48 m. long on the ground. Then find the height of the pole ?

A) 1080 cm B) 180 m
C) 108 m D) 118 cm
 
Answer & Explanation Answer: C) 108 m

Explanation:

We know the rule that,

 

At particular time for all object , ratio of height and shadow are same.

 

Let the height of the pole be 'H'

 

Then

 188=H48

 

=> H = 108 m.

Report Error

View Answer Report Error Discuss

19 8040
Q:

Two ships are sailing in the sea on the two sides of a lighthouse. The angle of elevation of the top of the lighthouse is observed from the ships are 30º and 45º respectively. If the lighthouse is 100 m high, the distance between the two ships is:

A) 173 m B) 200 m
C) 273 m D) 300 m
 
Answer & Explanation Answer: C) 273 m

Explanation:

 Let AB be the lighthouse and C and D be the positions of the ships.

 

 

Then, AB = 100m, ACB = 30°andADB =45°

 

ABAC=tan30°=13=>AC=AB*3=1003m

 

 

 ABAD=tan45°=1=>AD=AB=100m

CD=(AC+AD)=1003+100m=1003+1=100*2.73=273m

Report Error

View Answer Report Error Discuss

17 7874
Q:

The top and bottom of a tower were seen to be at angles of depression 30° and 60° from the top of a hill of height 100 m. Find the height of the tower ?

A) 42.2 mts B) 33.45 mts
C) 66.6 mts D) 58.78 mts
 
Answer & Explanation Answer: C) 66.6 mts

Explanation:

ht1488353450.jpg image

From above diagram
AC represents the hill and DE represents the tower

Given that AC = 100 m

angleXAD = angleADB = 30° (∵ AX || BD )
angleXAE = angleAEC = 60° (∵ AX || CE)

Let DE = h

Then, BC = DE = h, AB = (100-h) (∵ AC=100 and BC = h), BD = CE

tan 60°=AC/CE => √3 = 100/CE =>CE = 100/√3 ----- (1)

tan 30° = AB/BD => 1/√3 = 100−h/BD => BD = 100−h(√3)
∵ BD = CE and Substitute the value of CE from equation 1
100/√3 = 100−h(√3) => h = 66.66 mts

The height of the tower = 66.66 mts.

Report Error

View Answer Report Error Discuss

15 4340
Q:

A flagstaff 17.5 m high casts a shadow of length 40.25 m. What will be the height of a building, which casts a shadow of length 28.75 m under similar conditions ?  

A) 14 cm B) 13.5 cm
C) 12.5 cm D) 11.4 cm
 
Answer & Explanation Answer: C) 12.5 cm

Explanation:

Let the required height of the building be x meter

More shadow length, More height(direct proportion)

Hence we can write as

(shadow length) 40.25 : 28.75 :: 17.5 : x
⇒ 40.25 × x = 28.75 × 17.5
⇒ x = 28.75 × 17.5/40.25
= 2875 × 175/40250
= 2875 × 7/1610
= 2875/230
= 575/46
= 12.5 cm

Report Error

View Answer Report Error Discuss

16 4225