FACTS  AND  FORMULAE  FOR  HCF  AND  LCM  QUESTIONS

 

 

I.Factors and Multiples : If a number 'a' divides another number 'b' exactly, we say that 'a' is a factor of 'b'. In this case, b is called a multiple of a.

 

II.Highest Common Factor (H.C.F) or Greatest Common Measure (G.C.M) or Greatest Common Divisor (G.C.D) : The H.C.F. of two or more than two numbers is the greatest number that divides each of them exactly. There are two methods of finding the H.C.F. of a given set of numbers :

1. Factorization Method : Express each one of the given numbers as the product of prime factors.The product of least powers of common prime factors gives H.C.F.

2. Division Method : Suppose we have to find the H.C.F. of two given numbers. Divide the larger number by the smaller one. Now, divide the divisor by the remainder. Repeat the process of dividing the preceding number by the remainder last obtained till zero is obtained as remainder. The last divisor is the required H.C.F.

Finding the H.C.F. of more than two numbers : Suppose we have to find the H.C.F. of three numbers. Then, H.C.F. of [(H.C.F. of any two) and (the third number)] gives the H.C.F. of three given numbers. Similarly, the H.C.F. of more than three numbers may be obtained. 

 

III.Least Common Multiple (L.C.M) : The least number which is exactly divisible by each one of the given numbers is called their L.C.M.

1. Factorization Method of Finding L.C.M: Resolve each one of the given numbers into a product of prime factors. Then, L.C.M. is the product of highest powers of all the factors.

2. Common Division Method (Short-cut Method) of Finding L.C.M : Arrange the given numbers in a row in any order. Divide by a number which divides exactly at least two of the given numbers and carry forward the numbers which are not divisible. Repeat the above process till no two of the numbers are divisible by the same number except 1. The product of the divisors and the undivided numbers is the required L.C.M. of the given numbers.

 

IV. Product of two numbers = Product of their H.C.F and L.C.M

 

V. Co-primes : Two numbers are said to be co-primes if their H.C.F. is 1.

 

VI. H.C.F and L.C.M of Fractions :

1. H.C.F = H.C.F. of Numerators / L.C.M of Numerators

2. L.C.M = L.C.M of Numerators / H.C.F of Denominators

 

VII. H.C.F and L.C.M of Decimal Fractions : In given numbers, make the same number of decimal places by annexing zeros in some numbers, if necessary. Considering these numbers without decimal point, find H.C.F. or L.C.M. as the case may be. Now, in the result, mark off as many decimal places as are there in each of the given numbers.

 

VIII. Comparison of Fractions : Find the L.C.M. of the denominators of the given fractions. Convert each of the fractions into an equivalent fraction with L.C.M. as the denominator, by multiplying both the numerator and denominator by the same number. The resultant fraction with the greatest numerator is the greatest.

Q:

Three number are in the ratio of 3 : 4 : 5 and their L.C.M. is 2400. Their H.C.F. is:

A) 40 B) 80
C) 120 D) 200
 
Answer & Explanation Answer: A) 40

Explanation:

Let the numbers be 3x, 4x and 5x.

 

Then, their L.C.M. = 60x.

 

So, 60x = 2400 or x = 40.

 

 The numbers are (3 x 40), (4 x 40) and (5 x 40).

 

Hence, required H.C.F. = 40.

Report Error

View Answer Report Error Discuss

419 118247
Q:

The greatest number which on dividing 1657 and 2037 leaves remainders 6 and 5 respectively, is:

A) 123 B) 127
C) 235 D) 305
 
Answer & Explanation Answer: B) 127

Explanation:

Required number = H.C.F. of (1657 - 6) and (2037 - 5)

= H.C.F. of 1651 and 2032 = 127.

Report Error

View Answer Report Error Discuss

244 55927
Q:

The product of two numbers is 2028 and their H.C.F. is 13. The number of such pairs is:

A) 1 B) 2
C) 3 D) 4
 
Answer & Explanation Answer: B) 2

Explanation:

Let the numbers 13a and 13b.

Then, 13a x 13b = 2028

=>ab = 12.

Now, the co-primes with product 12 are (1, 12) and (3, 4).

[Note: Two integers a and b are said to be coprime or relatively prime if they have no common positive factor other than 1 or, equivalently, if their greatest common divisor is 1 ]

So, the required numbers are (13 x 1, 13 x 12) and (13 x 3, 13 x 4).

Clearly, there are 2 such pairs.

Report Error

View Answer Report Error Discuss

223 65660
Q:

The L.C.M of  22, 54, 108, 135 and 198 is

 

A) 330 B) 1980
C) 5940 D) 11880
 
Answer & Explanation Answer: C) 5940

Explanation:

 22 = 2 x 11

 54 = 2×33

108 = 22×33

135 = 33×5 

198 = 2×32×11

  L.C.M = 22×33×5×11=5940

Report Error

View Answer Report Error Discuss

214 56871
Q:

A rectangular courtyard 3.78 meters long 5.25 meters wide is to be paved exactly with square  tiles, all of the same size. what is the largest size of the tile which could be used for the purpose?

A) 14 cms B) 21 cms
C) 42 cms D) None of these
 
Answer & Explanation Answer: B) 21 cms

Explanation:

3.78 meters =378 cm = 2 × 3 × 3 × 3 × 7

5.25 meters=525 cm = 5 × 5 × 3 × 7

Hence common factors are 3 and 7

Hence LCM = 3 × 7 = 21

Hence largest size of square tiles that can be paved exactly with square tiles is 21 cm.

Report Error

View Answer Report Error Discuss

162 67263
Q:

The L.C.M of two numbers is 495 and their H.C.F is 5. If the sum of the numbers is 100, then their difference is 

A) 10 B) 46
C) 70 D) 90
 
Answer & Explanation Answer: A) 10

Explanation:

Let the numbers be x and (100-x).

 

Then,x100-x=5*495

 

 =>  x2-100x+2475=0

 

 =>  (x-55) (x-45) = 0

 

 =>  x = 55 or x = 45

 

  The numbers are 45 and 55

 

Required difference = (55-45) = 10

Report Error

View Answer Report Error Discuss

146 58361
Q:

The G.C.D of 1.08, 0.36 and 0.9 is

A) 0.03 B) 0.9
C) 0.18 D) 0.108
 
Answer & Explanation Answer: C) 0.18

Explanation:

Given numbers are 1.08 , 0.36 and 0.90

 H.C.F of 108, 36 and 90 is 18                  [  G.C.D is nothing but H.C.F]

 Therefore, H.C.F of given numbers = 0.18                 

Report Error

View Answer Report Error Discuss

138 49035
Q:

The sum of two numbers is 528 and their H.C.F is 33. The number of pairs of numbers satisfying the above condition is

A) 4 B) 6
C) 8 D) 12
 
Answer & Explanation Answer: A) 4

Explanation:

Let the required numbers be 33a and 33b. 

 

Then 33a +33b= 528   =>   a+b = 16.

 

Now, co-primes with sum 16 are (1,15) , (3,13) , (5,11) and (7,9).

 

Therefore, Required numbers are  ( 33 x 1, 33 x 15), (33 x 3, 33 x 13), (33 x 5, 33 x 11), (33 x 7, 33 x 9)

 

The number of such pairs is 4

Report Error

View Answer Report Error Discuss

128 47534